Free acids

M: Amount (g) of the test sample, calculated on the anhydrous basis

(2) Acetyl group—Weigh accurately about 0.1 g of Cellacefate, put in a glass-stoppered conical flask, add exactly 25 mL of 0.1 mol/L sodium hydroxide VS, and boil for 30 minutes under a reflux condenser. After cooling, add 5 drops of phenolphthalein TS, and titrate $\langle 2.50 \rangle$ with 0.1 mol/L hydrochloric acid VS. Perform a blank determination.

- Content (%) of free acids and bound acetyl group (C₂H₃O) = 0.4305A/M
 - A: Amount (mL) of 0.1 mol/L sodium hydroxide VS consumed, corrected by the blank determination
 - M: Amount (g) of the test sample, calculated on the anhydrous basis

Content (%) of acetyl group (C₂H₃O) = $100 \times (P - 0.5182B)/(100 - B) - 0.5772C$

- B: Amount (%) of free acids obtained in the Purity (2) Free acids
- C: Content (%) of carboxybenzoyl group
- *P*: Content (%) of free acids and bound acetyl group (C_2H_3O)

Containers and storage Containers—Tight containers.

Microcrystalline Cellulose

結晶セルロース

[9004-34-6, cellulose]

This monograph is harmonized with the European Pharmacopoeia and the U.S. Pharmacopeia. The parts of the text that are not harmonized are marked with symbols (\bullet).

Microcrystalline Cellulose is purified, partially depolymerized α -cellulose, obtained as a pulp from fibrous plant material, with mineral acids.

•The label indicates the mean degree of polymerization, loss on drying, and bulk density values with the range. \blacklozenge

***Description** Microcrystalline Cellulose occurs as a white crystalline powder having fluidity.

It is practically insoluble in water, in ethanol (95) and in diethyl ether.

It swells with sodium hydroxide TS on heating.

Identification (1) Dissolve 20 g of zinc chloride and 6.5 g of potassium iodide in 10.5 mL of water, add 0.5 g of iodine, and shake for 15 minutes. Place about 10 mg of Microcrystalline Cellulose on a watch glass, and disperse in 2 mL of this solution: the substance develops a blue-violet color.

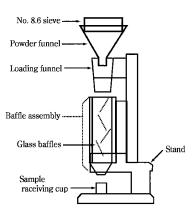
•(2) Sieve 20 g of Microcrystalline Cellulose for 5 minutes on an air-jet sieve equipped with a screen (No.391, 200 mm in inside diameter) having $38 - \mu m$ openings. If more than 5% is retained on the screen, mix 30 g of Microcrystalline Cellulose with 270 mL of water; otherwise, mix 45 g with 255 mL of water. Perform the mixing for 5 minutes in a high-speed (18,000 revolutions per minute or more) power blender. Transfer 100 mL of the dispersion to a 100-mL graduated cylinder, and allow to stand for 3 hours: a white, opaque, bubble-free dispersion, which does not form a supernatant liquid at the surface, is obtained. \bullet

(3) Transfer 1.3 g of Microcrystalline Cellulose, accurately weighed, to a 125-mL conical flask, and add exactly 25 mL each of water and 1 mol/L cupriethylenediamine TS. Immediately purge the solution with nitrogen, insert the stopper, and shake on a suitable mechanical shaker to dissolve. Perform the test with a suitable amount of this solution, taken exactly, according to Method 1 under Viscosity Determination $\langle 2.53 \rangle$ using a capillary viscometer having the viscosity constant (*K*) of approximately 0.03, at 25 ± 0.1 °C, and determine the kinematic viscosity, ν . Separately, perform the test with a mixture of exactly 25 mL each of water and 1 mol/L cupriethylenediamine TS in the same manner as above, using a capillary viscometer having *K* of approximately 0.01, and determine the kinematic viscosity, ν_0 .

Calculate the relative viscosity, η_{rel} , of Microcrystalline Cellulose by the formula:

$$\eta_{\rm rel} = v/v_{\rm o}$$

Obtain the product, $[\eta]C$, of intrinsic viscosity $[\eta](mL/g)$ and concentration C (g/100 mL) from the value η_{rel} of the Table. When calculate the degree of polymerization, P, by the following formula, P is not more than 350 \diamond and within the labeled range. \diamond


$$P = (95)[\eta]C/M_{\rm T}$$

 $M_{\rm T}$: Amount (g) of the sample, calculated on the dried basis

pH $\langle 2.54 \rangle$ Shake 5.0 g of Microcrystalline Cellulose with 40 mL of water for 20 minutes, and centrifuge: the pH of the supernatant liquid is between 5.0 and 7.5.

Purity (1) Heavy metals (1.07)—Proceed with 2.0 g of Microcrystalline Cellulose according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 10 ppm).

(2) Water-soluble substances—Shake 5.0 g of Microcrystalline Cellulose with 80 mL of water for 10 minutes, filter with the aid of vacuum through a filter paper for quantitative analysis (5C) into a vacuum flask. Evaporate the clear filtrate in a tared evaporating dish to dryness without charring, dry at 105° C for 1 hour, cool in a desiccator, and weigh: the difference between the mass of the residue and the

JP XVI

mass obtained from a blank determination does not exceed 12.5 mg.

(3) Diethyl ether-soluble substances—Place 10.0 g of Microcrystalline Cellulose in a column having an internal diameter of about 20 mm, and pass 50 mL of peroxide-free diethyl ether through the column. Evaporate the eluate to dryness in a previously dried and tared evaporation dish.

Dry the residue at 105° C for 30 minutes, allow to cool in a desiccator, and weigh: the difference between the mass of the residue and the mass obtained from a blank determination does not exceed 5.0 mg.

Conductivity <2.51> Perform the test as directed in the Conductivity Measurement with the supernatant liquid ob-

Table for Conversion of Relative Viscosity (η_{rel}) into the Product of Limiting Viscosity and Concentration ([η]C)

	$[\eta]C$									
η_{rel}	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
1.1	0.098	0.106	0.115	0.125	0.134	0.143	0.152	0.161	0.170	0.180
1.2	0.189	0.198	0.207	0.216	0.225	0.233	0.242	0.250	0.259	0.268
1.3	0.276	0.285	0.293	0.302	0.310	0.318	0.326	0.334	0.342	0.350
1.4	0.358	0.367	0.375	0.383	0.391	0.399	0.407	0.414	0.422	0.430
1.5	0.437	0.445	0.453	0.460	0.468	0.476	0.484	0.491	0.499	0.507
1.6	0.515	0.522	0.529	0.536	0.544	0.551	0.558	0.566	0.573	0.580
1.7	0.587	0.595	0.602	0.608	0.615	0.622	0.629	0.636	0.642	0.649
1.8	0.656	0.663	0.670	0.677	0.683	0.690	0.697	0.704	0.710	0.717
1.9	0.723	0.730	0.736	0.743	0.749	0.756	0.762	0.769	0.775	0.782
2.0	0.788	0.795	0.802	0.809	0.815	0.821	0.827	0.833	0.840	0.846
2.1	0.852	0.858	0.864	0.870	0.876	0.882	0.888	0.894	0.900	0.906
2.2	0.912	0.918	0.924	0.929	0.935	0.941	0.948	0.953	0.959	0.965
2.3	0.971	0.976	0.983	0.988	0.994	1.000	1.006	1.011	1.017	1.022
2.4	1.028	1.033	1.039	1.044	1.050	1.056	1.061	1.067	1.072	1.078
2.5	1.083	1.089	1.094	1.100	1.105	1.111	1.116	1.121	1.126	1.131
2.6	1.137	1.142	1.147	1.153	1.158	1.163	1.169	1.174	1.179	1.184
2.7	1.190	1.195	1.200	1.205	1.210	1.215	1.220	1.225	1.230	1.235
2.8	1.240	1.245	1.250	1.255	1.260	1.265	1.270	1.275	1.280	1.285
2.9	1.290	1.295	1.300	1.305	1.310	1.314	1.319	1.324	1.329	1.333
3.0	1.338	1.343	1.348	1.352	1.357	1.362	1.367	1.371	1.376	1.381
3.1	1.386	1.390	1.395	1.400	1.405	1.409	1.414	1.418	1.423	1.427
3.2	1.432	1.436	1.441	1.446	1.450	1.455	1.459	1.464	1.468	1.473
3.3	1.477	1.482	1.486	1.491	1.496	1.500	1.504	1.508	1.513	1.517
3.4	1.521	1.525	1.529	1.533	1.537	1.542	1.546	1.550	1.554	1.558
3.5	1.562	1.566	1.570	1.575	1.579	1.583	1.587	1.591	1.595	1.600
3.6	1.604	1.608	1.612	1.617	1.621	1.625	1.629	1.633	1.637	1.642
3.7	1.646	1.650	1.654	1.658	1.662	1.666	1.671	1.675	1.679	1.683
3.8	1.687	1.691	1.695	1.700	1.704	1.708	1.712	1.715	1.719	1.723
3.9	1.727	1.731	1.735	1.739	1.742	1.746	1.750	1.754	1.758	1.762
4.0	1.765	1.769	1.773	1.777	1.781	1.785	1.789	1.792	1.796	1.800
4.1	1.804	1.808	1.811	1.815	1.819	1.822	1.826	1.830	1.833	1.837
4.2	1.841	1.845	1.848	1.852	1.856	1.859	1.863	1.867	1.870	1.874
4.3	1.878	1.882	1.885	1.889	1.893	1.896	1.900	1.904	1.907	1.911
4.4	1.914	1.918	1.921	1.925	1.929	1.932	1.936	1.939	1.943	1.946
4.5	1.950	1.954	1.957	1.961	1.964	1.968	1.971	1.975	1.979	1.982
4.6	1.986	1.989	1.993	1.996	2.000	2.003	2.007	2.010	2.013	2.017
4.7	2.020	2.023	2.027	2.030	2.033	2.037	2.040	2.043	2.047	2.050
4.8	2.053	2.057	2.060	2.063	2.067	2.070	2.073	2.077	2.080	2.083
4.9	2.087	2.090	2.093	2.097	2.100	2.103	2.107	2.110	2.113	2.116
5.0	2.119	2.122	2.125	2.129	2.132	2.135	2.139	2.142	2.145	2.148
5.1	2.151	2.154	2.158	2.160	2.164	2.167	2.170	2.173	2.176	2.180
5.2	2.183	2.186	2.190	2.192	2.195	2.197	2.200	2.203	2.206	2.209
5.3	2.212	2.215	2.218	2.221	2.224	2.227	2.230	2.233	2.236	2.240
5.4	2.243	2.246	2.249	2.252	2.255	2.258	2.261	2.264	2.267	2.270
5.5	2.273	2.276	2.279	2.282	2.285	2.288	2.291	2.294	2.297	2.300
5.6	2.303	2.306	2.309	2.312	2.315	2.318	2.320	2.324	2.326	2.329
5.7	2.332	2.335	2.338	2.341	2.344	2.347	2.350	2.353	2.355	2.358
5.8	2.361	2.364	2.367	2.370	2.373	2.376	2.379	2.382	2.384	2.387
5.9	2.390	2.393	2.396	2.400	2.403	2.405	2.408	2.411	2.414	2.417
6.0	2.419	2.422	2.425	2.428	2.431	2.433	2.436	2.439	2.442	2.444

tained in the pH as the sample solution, and determine the conductivity \bullet at 25 ± 0.1°C. \bullet Determine in the same way the conductivity of water used for the preparation of the sample solution: the deference between these conductivities is not more than 75 μ S·cm⁻¹.

Loss on drying $\langle 2.41 \rangle$ Not more than 7.0% \diamond and within a range as specified on the label \diamond (1 g, 105°C. 3 hours).

Residue on ignition $\langle 2.44 \rangle$ Not more than 0.1% (2 g).

Bulk density (i) Apparatus—Use a volumeter shown in the figure. Put a No.8.6 sieve $(2000 \,\mu\text{m})$ on the top of the volumeter. A funnel is mounted over a baffle box, having four glass baffle plates inside which the sample powder slides as it passes. At the bottom of the baffle box is a funnel that collect the powder, and allows it to pour into a sample

			$[\eta]C$					
0.03	00	0.01 0.02 0.03 0.0	04	0.05	0.06	0.07	0.08	0.09
2.456	147			2.461	2.464	2.467		2.472
2.483	175			2.489	2.492	2.494		2.500
2.511	503		513	2.516	2.518	2.521		2.526
2.537	529		540	2.542	2.545	2.547	2.550	2.553
2.563	555		566	2.568	2.571	2.574		2.579
2.590	581		592	2.595	2.597	2.600	2.603	2.605
2.615	508	2.610 2.613 2.615 2.6	618	2.620	2.623	2.625	2.627	2.630
2.640	533	2.635 2.637 2.640 2.6	643	2.645	2.648	2.650	2.653	2.655
2.665	558	2.660 2.663 2.665 2.6	668	2.670	2.673	2.675	2.678	2.680
2.690	583			2.695	2.698	2.700		2.705
2.714	707		717	2.719	2.721	2.724		2.729
2.738	731			2.743	2.745	2.748	2.750	2.752
2.762	755		764	2.767	2.769	2.771		2.776
2.786	779		788	2.790	2.793	2.795	2.798	2.800
2.809	302	2.805 2.807 2.809 2.8	812	2.814	2.816	2.819		2.823
2.833	326			2.837	2.840	2.842	2.844	2.847
2.856	349		858	2.860	2.863	2.865	2.868	2.870
2.879	373			2.884	2.887	2.889		2.893
2.902	395			2.907	2.909	2.911		2.915
2.924	918		926	2.928	2.931	2.933		2.937
2.946	939	2.942 2.944 2.946 2.9	948	2.950	2.952	2.955	2.957	2.959
2.968	961	2.963 2.966 2.968 2.9	970	2.972	2.974	2.976	2.979	2.981
2.990	983			2.994	2.996	2.998	3.000	3.002
3.010)04			3.015	3.017	3.019		3.023
3.031)25			3.035	3.037	3.040	3.042	3.044
3.052)46			3.056	3.058	3.060	3.062	3.064
3.073)67			3.077	3.079	3.081		3.085
3.094)87			3.098	3.100	3.102	3.104	3.106
3.114	108			3.118	3.120	3.122	3.124	3.126
3.134	128	3.130 3.132 3.134 3.1	136	3.138	3.140	3.142	3.144	3.146
3.154	148	3.150 3.152 3.154 3.1		3.158	3.160	3.162	3.164	3.166
3.174	168			3.178	3.180	3.182	3.184	3.186
3.194	188			3.198	3.200	3.202	3.204	3.206
3.214	208			3.217	3.219	3.221		3.225
3.233	227			3.237	3.239	3.241		3.244
3.252	246			3.256	3.258	3.260		3.264
3.271	266			3.275	3.277	3.279		3.283
3.291	285			3.295	3.297	3.298		3.302
3.309	304			3.313	3.316	3.318		3.321
0.3)	0.1 0.2 0.3 0.4	4	0.5	0.6	0.7	0.8	0.9
3.37	32	3.34 3.36 3.37 3.3	39	3.41	3.43	3.45	3.46	3.48
3.55	50			3.58	3.60	3.61		3.64
3.71	56			3.74	3.76	3.77	3.79	3.80
3.86	30			3.89	3.90	3.92	3.93	3.95
4.00	96			4.03	4.04	4.06		4.09
4.00	10			4.03 4.17	4.04	4.00		4.09
4.14	23			4.17	4.18	4.19		4.22
4.27	35			4.41	4.30	4.31		4.34
								4.45
								4.56
4.49 4.60	46 57							

602 **Powdered Cellulose** / Official Monographs

receiving cup mounted directly below it.

(ii) Procedure—Weigh accurately the mass of a brass or stainless steel cup, which has a capacity of 25.0 ± 0.05 mL and an inside diameter of 30.0 ± 2.0 mm, and put the cup directly below the funnel of the volumeter. Slowly pour Microcrystalline Cellulose 5.1 cm height from the upper part of the powder funnel through the sieve, at a rate suitable to prevent clogging, until the cup overflows. If the clogging occurs, take out the sieve. Level the excess powder with the aid of a slide glass, weigh the filled cup, and weigh accurately the content of the cup, and then calculate the bulk density by the following expression: the bulk density is within the labeled specification.

Bulk density $(g/cm^3) = A/25$

A: Measured mass (g) of the content of the cup

•Microbial limit $\langle 4.05 \rangle$ The acceptance criteria of TAMC and TYMC are 10³ CFU/g and 10² CFU/g, respectively. *Escherichia coli, Salmonella, Pseudomonas aeruginosa* and *Staphylococcus aureus* are not observed.

◆Containers and storage Containers—Tight containers. ◆

Powdered Cellulose

粉末セルロース

[9004-34-6, Cellulose]

This monograph is harmonized with the European Pharmacopoeia and the U.S. Pharmacopeia. The parts of the text that are not harmonized are marked with symbols (\bullet).

Powdered Cellulose is a purified, mechanically disintegrated alpha cellulose obtained as a pulp, \bullet after partial hydrolysis as occasion demands, from fibrous plant materials.

The label indicates the mean degree of polymerization value with a range.

•Description Powdered Cellulose occurs as a white powder.

It is practically insoluble in water, in ethanol (95) and in diethyl ether. \bullet

Identification (1) Dissolve 20 g of zinc chloride and 6.5 g of potassium iodide in 10.5 mL of water, add 0.5 g of iodine, and shake for 15 minutes. Place about 10 mg of Powdered Cellulose on a watch glass, and disperse in 2 mL of this solution: the substance develops a blue-violet color.

•(2) Mix 30 g of Powdered Cellulose with 270 mL of water in a high-speed (18,000 revolutions per minute or more) blender for 5 minutes, transfer 100 mL of the dispersion to a 100-mL graduated cylinder, and allow to stand for 1 hour: a supernatant liquid appears above the layer of the cellulose.

(3) Transfer 0.25 g of Powdered Cellulose, accurately weighed, to a 125-mL conical flask, add exactly 25 mL each of water and 1 mol/L cupriethylenediamine TS, and proceed as directed in the Identification (3) under Microcrystalline Cellulose. The mean degree of polymerization, P, is not less than 440 and is within the labeled specification.

pH $\langle 2.54 \rangle$ Mix 10 g of Powdered Cellulose with 90 mL of water, and allow to stand for 1 hour with occasional stirring: the pH of the supernatant liquid is between 5.0 and 7.5.

Purity (1) Heavy metals (1.07)—Proceed with 2.0 g of Powdered Cellulose according to Method 2, and perform the test. Prepare the control solution with 2.0 mL of Standard Lead Solution (not more than 10 ppm).

(2) Water-soluble substances—Shake 6.0 g of Powdered Cellulose with 90 mL of recently boiled and cooled water, and allow to stand for 10 minutes with occasional shaking. Filter, with the aid of vacuum through a filter paper, discard the first 10 mL of the filtrate, and pass the subsequent filtrate through the same filter, if necessary, to obtain a clear filtrate. Evaporate a 15.0-mL portion of the filtrate in a tared evaporating dish to dryness without charring, dry at 105° C for 1 hour, and weigh after allowing to cool in a desiccator: the difference between the mass of the residue and the mass obtained from a blank determination does not exceed 15.0 mg.

(3) Diethyl ether-soluble substances—Place 10.0 g of Powdered Cellulose in a column having an internal diameter of about 20 mm, and pass 50 mL of peroxide-free diethyl ether through the column. Evaporate the eluate to dryness in a previously dried and tared evaporation dish. Dry the residue at $105 \,^{\circ}$ C for 30 minutes, and weigh after allowing to cool in a desiccator: the difference between the mass of the residue and the mass obtained from a blank determination does not exceed 15.0 mg (0.15%).

Loss on drying $\langle 2.41 \rangle$ Not more than 6.5% (1 g, 105°C, 3 hours).

Residue on ignition $\langle 2.44 \rangle$ Not more than 0.3% (1 g calculated on the dried basis).

•Microbial limit $\langle 4.05 \rangle$ The acceptance criteria of TAMC and TYMC are 10³ CFU/g and 10² CFU/g, respectively. *Escherichia coli, Salmonella, Pseudomonas aeruginosa* and *Staphylococcus aureus* are not observed.

◆Containers and storage Containers—Tight containers. ◆

Celmoleukin (Genetical Recombination)

セルモロイキン(遺伝子組換え)

APTSSSTKKT	QLQLEHLLLD	LQMILNGINN	YKNPKLTRML	TFKFYMPKKA
TELKHLQCLE	EELKPLEEVL	NLAQSKNFHL	RPRDLISNIN	VIVLELKGSE
TTFMCEYADE	TATIVEFLNR	WITFCQSIIS	TLT	

C₆₉₃H₁₁₁₈N₁₇₈O₂₀₃S₇: 15415.82 [94218-72-1]

The desired product of Celmoleukin (Genetical Recombination) is a protein consisting of 133 amino acid residues manufactured by *E. coli* through expression of human interleukin-2 cDNA.

It is a solution having a T-lymphocyte activating effect.

It contains not less than 0.5 and not more than 1.5